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Abstract

In this work we investigate a technique for accelerating convergence of adjoint-based optimization of PDE systems
based on a nonlinear change of variables in the control space. This change of variables is accomplished in the ‘‘differentiate
– then – discretize” approach by constructing the descent directions in a control space not equipped with the Hilbert struc-
ture. We show how such descent directions can be computed in general Lebesgue and Besov spaces, and argue that in the
Besov space case determination of descent directions can be interpreted as nonlinear wavelet filtering of the adjoint field.
The freedom involved in choosing parameters characterizing the spaces in which the steepest descent directions are con-
structed can be leveraged to accelerate convergence of iterations. Our computational examples involving state estimation
problems for the 1D Kuramoto–Sivashinsky and 3D Navier–Stokes equations indeed show significantly improved
performance of the proposed method as compared to the standard approaches.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Problems of optimal control of distributed systems arise in many areas of science and engineering. Without
loss of generality, in this investigation we will focus on problems motivated by applications in fluid mechanics
such as:

� shape optimization in aerodynamics (see, e.g., [1,2]),
� flow control for drag reduction, (see, e.g., [3,4]),
� variational data assimilation in dynamic meteorology known as 4DVAR (see, e.g., [5]),
� mixing enhancement (see, e.g., [6]).
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Denoting the state of the system v 2 X , where X is an infinite-dimensional state space, and the control var-
iable / 2 U, where U is a finite-dimensional or infinite-dimensional control space, the governing system of par-
tial differential equations (PDEs) can be expressed in a general form as Gðv;/Þ ¼ 0. Then the problem of
finding an optimal control /opt can be stated as PDE-constrained optimization in the following way:
min
v2X ;/2U

jðv;/Þ; ð1aÞ

subject to Gðv;/Þ ¼ 0; ð1bÞ
where j : X � U ! R is the cost functional representing mathematically the performance criterion we want to
optimize. In principle, after a suitable discretization, problems of the type (1) can be solved using general
methods of Nonlinear Programming (NLP), see e.g., [7]. However, from the computational point of view,
formulation (1) is not quite convenient when dealing with distributed systems, as it requires simultaneous
optimization over discretizations of the state and control spaces X and U, the first of which may have a very
large dimension. In practice, in the presence of equality constraints only and subject to certain assumptions
on the function Gðv;/Þ, we can write v ¼ vð/Þ which allows us to define the reduced cost functional
J ð/Þ , jðvð/Þ;/Þ, so that (1) can be transformed to the equivalent unconstrained formulation
min
/2U

J ð/Þ: ð2Þ
The advantage of (2) as compared to (1) is that now optimization must be performed with respect to the con-
trol variable / only. Hereafter we will focus exclusively on formulation (2) and, unless needed for clarity, we
will drop the adjective ‘‘reduced” when referring to the cost functional J ð/Þ. The mathematical theory of opti-
mal control of PDE systems was developed initially by Lions [8]; in the context of problems arising in fluid
mechanics it was further investigated by Abergel and Temam [9]. The state of the art of this area is surveyed
in the monograph by Gunzburger [10]. There are two main paradigms relevant to solving problem (2): the
‘‘discretize – then – differentiate” approach stipulates that the state variable v and, if necessary, the control
variable / are discretized first and then the optimization problem is solved in the finite-dimensional setting;
on the other hand, in the ‘‘differentiate – then – discretize” approach the optimality conditions are derived
on the continuous (PDE) level and only then discretized and solved numerically. While it is recognized that
in general these two routes may lead to different results and there is an on-going debate as to the relative merits
of the two approaches [10], in the present work we will adopt the ‘‘differentiate – then – discretize” method-
ology, as in this context our approach is more straightforward to introduce.

There are aspects of optimal control problems in fluid mechanics that make their computational solution
particularly challenging. First of all, given the usual dimension of spatio-temporal discretizations ~v of the state
variable v [tildeð�Þ will denote a discretized version of a variable, operator, or space], which often involve as
many as Oð1016Þ degrees of freedom, it is impossible to store the linear operators acting on ~v as matrices.
Therefore, most existing NLP software packages may not be used and ‘‘matrix-free” alternatives must be
developed. Moreover, complete Hessian information is often unavailable and consequently Newton’s method
can rarely be used. Consequently, one must employ quasi-Newton or gradient approaches and in this inves-
tigation we focus on gradient-based methods. The necessary condition characterizing the minimizer /opt of the
cost functional J ð/Þ is the vanishing of the Gâteaux differential J 0 : U � U ! R, i.e.,
J 0ð/opt; /
0Þ ¼ 0; 8/0 2 U; ð3Þ
where the Gâteaux differential is defined as J 0ð/; /0Þ , lim�!0
J ð/þ�/0Þ�J ð/Þ

�
(the symbol , means ‘‘equal to by

definition”). In many applications, including the cases considered in the present work, the cost functional j is
quadratic in both v and /, however, v ¼ vð/Þ is a nonlinear mapping, and therefore optimization problem (2)
will often be nonconvex. As a result, problem (2) may admit several local minimizers and (3) will characterize
such a local minimizer /opt only. Given a discretization of some initial guess ~/ð0Þ ¼ ~/0, an approximation of a
minimizer can be found using a gradient-based descent method of the general form
~/ðnþ1Þ ¼ ~/ðnÞ þAg$J ð~/ðnÞÞ; n ¼ 0; 1; . . . ; ð4Þ
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such that limn!1~/ðnÞ ¼ ~/opt, where n is the iteration count. At every iteration n the descent direction Ag$J is
determined based on the gradient g$J of the cost functional evaluated at ~/ðnÞ, and iterations are performed
until a critical point is reached, i.e., until g$J ð~/ðnÞÞ ¼ 0 in some approximate sense. As will be shown below,
this gradient can be conveniently expressed using solutions of a suitably defined adjoint system. Adopting dif-
ferent forms of the operator A we may recover different variants of the gradient method such as the steepest
descent method, the conjugate gradient method, etc.

We emphasize that, as shown in [11], PDE-constrained optimization problems with quadratic cost function-
als are often of the elliptic type in the sense that the reduced Hessian of the cost functional is an elliptic oper-
ator regardless of the specific type of the PDE representing the constraint. It is also well known [7,12] that for
convex problems the rate of convergence of gradient iterations (4) to the discrete minimizer ~/opt depends on
the condition number , of the (reduced) Hessian of J ð~/Þ in the neighborhood of the minimizer. The condition
number characterizes the local ellipticity of the isocontours of J ð~/Þ, i.e., when , J 1 these isocontours are
close to spheres, whereas when ,� 1, the isocontours are squashed in some directions resulting in many iter-
ations required in order to converge to the minimizer in (4). Convergence of gradient iterations (4) can thus be
accelerated by a suitable rescaling of the independent variables, so that the condition number of the problem is
reduced, a procedure known as preconditioning. The effect of preconditioning can be represented as a trans-
formation of the descent direction Ag$J in (4) by a preconditioning operator (matrix) ~T chosen so that the
condition number of the resulting problem is reduced. Algebraic preconditioning strategies [13] determine the
preconditioner ~T by exploiting the algebraic structure of the descent direction A ~$J . On the other hand, oper-
ator preconditioning strategies [14] determine a continuous preconditioning operator T on the PDE level by
analyzing properties of the infinite-dimensional problem. An advantage of the latter approach is that the
resulting improvements in the bounds on the condition numbers are often discretization-independent. An
example of the operator preconditioning approach is furnished by the method of Sobolev gradients developed
by Neuberger [15] which derives the preconditioning operators from the corresponding Sobolev norms. In
other words, when using different Hilbert spaces V equipped with the inner products ð�; �ÞV as the control space
U, Riesz’ theorem [16] guarantees existence of the corresponding gradients $VJ 2 V which are defined
through the Riesz identity
J 0ð/; /0Þ ¼ ð$VJ ;/0ÞV; 8/02V : ð5Þ
As will be shown below, different Hilbert (Sobolev) gradients can be computed by applying a linear trans-
formation to the adjoint field. An approach employing the Sobolev spaces H p as the Hilbert spaces for gra-
dient extraction was used with success for solution of problems involving minimization of potentials [17]
and was also employed in the context of PDE-constrained optimization in [18]. A simple, yet illuminating,
example illustrating an application of operator preconditioning to solution of a linear boundary value prob-
lem for an elliptic PDE is presented in Appendix A. The utility of different Hilbert space gradients in an area of
mathematical modelling was recently reviewed in [19]. Preconditioners, both of the algebraic and operator
type, are also useful for solution of nonlinear problems, however, in such situations the preconditioner is often
allowed to vary from one iteration to another, resulting in the so-called variable preconditioning [13,14]. This
approach is related to the variable metric method used for solution of systems of nonlinear algebraic equations
[12]. As regards PDE-constrained optimization, a heuristically motivated variable preconditioning approach
was developed in [18], where it was proposed to precondition the gradients by ‘‘focusing” them on a specific
range of length-scales which was modified during the iterations, thereby resulting in an effectively multiscale
strategy.

The goal of the present paper is to propose and investigate a more general preconditioning approach for
accelerating convergence of adjoint-based optimization of PDE systems. This method extends the concept
of the Sobolev gradients by making it possible to extract their counterparts in general Banach spaces not
equipped with the Hilbert structure. Since Riesz representation (5) does not apply in non-Hilbert spaces,
we employ a more general procedure to extract the steepest descent directions in Banach spaces which follows
the proposal first made by Neuberger in [15]. This procedure will involve a nonlinear transformation of the
adjoint field equivalent to a nonlinear change of variables in iterative procedure (4). Furthermore, by extract-
ing the steepest descent directions in a continuous family of nested spaces we will allow this change of the met-
ric to vary in the course of iterations (4). Our computational examples illustrating application of this strategy
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to solve optimal control problems for two different PDE systems show advantages of the proposed approach
with respect to traditional techniques. As argued in [18] and as is also well-known in the image processing lit-
erature (see, e.g., [20]), extraction of gradients in different functional spaces is in fact equivalent to applying
different filters to the adjoint field. Gradients extracted in Hilbert spaces can be regarded as obtained via
an application of a linear filter to the adjoint state and, for example, the Sobolev gradients can be viewed
as obtained via application of suitable low-pass filters (defined in wavenumber space) to the adjoint field
[18]. In the same spirit, extraction of the steepest descent directions in general Banach spaces not endowed with
a Hilbert structure can be regarded as application of a nonlinear filter to the adjoint field. In particular, as will
be shown below, identification of directions of the steepest descent in Besov spaces can be regarded as non-
linear wavelet filtering of the adjoint field emphasizing its coherent part [21], in contrast to the low-pass filter-
ing which emphasizes specific wavenumber components only.

The structure of the paper is as follows: in the next Section we introduce our two model PDE-constrained
optimization problems, one formulated using the Kuramoto–Sivashinsky equation in a one-dimensional (1D)
periodic domain and the other formulated using the Navier–Stokes system in a three-dimensional (3D) chan-
nel periodic in the streamwise and spanwise directions; in that Section we also show how the Sobolev gradients
of the relevant cost functionals can be identified from solutions of the appropriate adjoint problems; in the
following Section we describe how directions of the steepest descent in various Banach spaces (Lebesgue,
Besov) can be identified; in Section 4 we present computational results illustrating how these descent directions
can be used to accelerate convergence of the iterative solution procedure; summary and conclusions are
deferred to Section 5.
2. Model optimal control problems

In this Section we set up two model PDE-constrained optimization problems whose computational solution
will be used to illustrate our new approach. In both cases we are interested in solving a variational data assim-
ilation problem (4DVAR) [5], wherein, given some incomplete and possibly noisy measurements of the system
evolution over the time window ½0; T �, one seeks to determine the initial condition (the control variable) / in
such a way that the ensuing system evolution matches the available measurements as well as possible. We
formulate this problem for the Kuramoto–Sivashinsky equation in a 1D periodic domain and then the
Navier–Stokes system in a 3D channel. These problems were introduced as benchmarks for adjoint-based opti-
mization in [18] and [22], respectively. An advantage of using such ‘‘synthetic” state estimation problems is that
in the absence of noise we know the exact minimizer (which is the state used to generate the measurements) and
thus we can know whether the minimum actually found is local or global. Without the risk of confusion, in
certain cases we will use the same symbols to denote analogous quantities in the statement of the optimization
problems for the Kuramoto-Sivashinsky and Navier–Stokes equations in Sections 2.1 and 2.2, respectively.

2.1. State reconstruction for the Kuramoto–Sivashinsky system

The Kuramoto–Sivashinsky equation is chosen here, since its solutions are endowed with chaotic and mul-
tiscale behavior which makes it an attractive model for the Navier–Stokes system. For simplicity, we will con-
sider this equation on a periodic spatial domain X ¼ ð0; 2pÞ and a time interval ½0; T �
otuþ 4o
4
xuþ jðo2

xuþ uoxuÞ ¼ 0; x 2 X; t 2 ½0; T �;
oi

xuð0; tÞ ¼ oi
xuð2p; tÞ; t 2 ½0; T �; i ¼ 0; . . . ; 3;

uðx; 0Þ ¼ /; x 2 X:

8><>: ð6Þ
Out of many different ways in which the coefficients of the Kuramoto–Sivashinsky equation may be scaled,
we follow here the approach proposed in [23]. In our computations we will set j ¼ 4000 which will result in
23–24 coherent structures (‘‘bumps”) present in the domain. A solution of system (6) exhibiting a character-
istic spatio-temporal pattern is shown in Fig. 1 (the numerical method used to obtain this solution is described
further below). We refer the reader to [18] for further details related to the Kuramoto–Sivashinsky system as a
model problem for adjoint-based optimization.
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Fig. 1. Dynamics of the Kuramoto–Sivashinsky system for j ¼ 4� 103: (a) initial condition / (chosen on the chaotic attractor of the
system), and (b) spatio-temporal evolution of the system [visualized are the zero (solid), several positive (dotted) and negative (dashed)
isocontours of u in the space–time plane].
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Given incomplete (and possibly noisy) measurements y ¼ Huact 2 Y, where uactð�; tÞ 2 X are states at the
actual system trajectory and H : X ! Y is an observation operator with Y the space of measurements, our
optimization problem consists in finding an initial condition /opt in (6) which minimizes the following cost
functional
J ð/Þ ¼ 1

2

Z T

0

½Huð/Þ � y�2 ds: ð7Þ
Consistently with the properties of system (6) [24], we will assume that / 2 U ¼ L2ðXÞ. Since J depends on
the control variable / implicitly through state equation (6), expression (7) represents in fact a reduced cost
functional. We will assume that the observation operator H has the form of projection of the state u on a
set of cosine modes with the wavenumbers in some set Kr, i.e.,
H ,
X
r2Kr

Pr; where Prz ,
1

p

Z 2p

0

cosðrx0Þzðx0Þdx0
� �

cosðrxÞ: ð8Þ
The Gâteaux differential of (7) is given by
J 0ð/; /0Þ ¼
Z T

0

Z 2p

0

ðHu� yÞHu0 dxdt; ð9Þ
where the perturbation u0ð/; /0Þ satisfies the Kuramoto–Sivashinsky equation linearized around the state uð/Þ,
i.e.,
Lu0 , otu0 þ 4o
4
xu0 þ j½o2

xu0 þ uoxu0 þ ðoxuÞu0� ¼ 0; x 2 X; t 2 ½0; T �;
oi

xu
0ð0; tÞ ¼ oi

xu
0ð2p; tÞ; t 2 ½0; T �; i ¼ 0; . . . ; 3;

u0ðx; 0Þ ¼ /0; x 2 X;

8><>: ð10Þ
with the operator L : X ! X 	 understood in the weak sense (X 	 is the space dual to X ). Relation (9) can now
be transformed to a form consistent with (5) by introducing an adjoint operator L	 : X ! X 	 and the corre-
sponding adjoint state u	 2 X via the following identity:
hu	;Lu0iX�X	 ¼ hL
	u	; u0iX�X	 þ b; ð11Þ
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where h�; �iX�X	 represents the duality pairing between the spaces X and its dual X 	, i.e., given z1 2
X and z2 2 X 	; hz1; z2iX�X	 ,

R T

0

R 2p
0

z1 z2 dtdx. Using integration by parts and the definition of L in (10), we
obtain
L	u	 , � otu	 þ 4o4
xu	 þ jðo2

xu	 � uoxu	Þ; and b ¼
Z 2p

0

u	 u0 dx
� �t¼T

t¼0

: ð12Þ
We remark that b does not contain any boundary terms (resulting from integration by parts), since all of them
vanish due to periodicity. Defining an adjoint system as
L	u	 ¼ H	ðHu� yÞ; x 2 X; t 2 ½0; T �;
oi

xu
	ð0; tÞ ¼ oi

xu
	ð2p; tÞ; t 2 ½0; T �; i ¼ 0; . . . ; 3;

u	ðx; T Þ ¼ 0; x 2 X;

8><>: ð13Þ
and using (10)–(12) we can now express Gâteaux differential (9) in the desired form (5), namely
J 0ð/; /0Þ ¼
Z 2p

0

u	jt¼0 /0 dx: ð14Þ
Thus, this differential (i.e., the sensitivity of the cost functional J with respect to perturbations /0 of the
initial condition) can be expressed using the solution of adjoint system (13). Physically, the adjoint field eval-
uated in the part of the domain X� ½0; T � where the control is defined represents the sensitivity of cost func-
tional (7) to the control variable. In the present problem, this control variable is the unknown initial condition
which we seek to reconstruct.

Relationship (14) can now be employed to extract the gradient required in descent optimization algorithm
(4). Since U ¼ L2ð0; 2pÞ is equipped with the inner product ðz1; z2ÞL2

,

R 2p
0

z1z2 dx for z1; z2 2 L2ð0; 2pÞ, we
immediately obtain
J 0ð/; /0Þ ¼
Z 2p

0

u	jt¼0 /0 dx ¼ ð$L2J ;/0ÞL2
) $L2J ¼ u	jt¼0: ð15Þ
Despite its simplicity, this is often not an optimal choice, as it may result in poor scaling of the correspond-
ing discrete optimization problem. For reasons explained hereafter (see also [15,18]), in many cases it is ben-
eficial to extract gradients in Sobolev spaces, for instance in the space H 1ðlÞð0; 2pÞ equipped with the inner
product
ðz1; z2ÞH1ðlÞ ¼
1

ð1þ l2Þ

Z 2p

0

½z1 z2 þ l2ðoxz1Þ ðoxz2Þ�dx; ð16Þ
where l is an adjustable length-scale parameter (in contrast, the space L2ð0; 2pÞ does not possess any adjustable
parameters). Identification J 0ð/; /0Þ ¼ ð$H1ðlÞ

J ;/0ÞH1ðlÞ [cf. (5)] yields, after integration by parts, the gradient
$H1ðlÞ

J defined as the solution of the following boundary value problem for the Helmholtz equation
1
1þl2 ½1� l2 o2

x �rH1ðlÞ
J ¼ u	jt¼0; x 2 X

rH1ðlÞ
J ð0Þ ¼ rH1ðlÞ

Jð2pÞ:

(
ð17Þ
Thus, the Sobolev space gradient $H1ðlÞ
J is obtained by applying the inverse Helmholtz operator to the

‘‘classical” L2 gradient. Interestingly, when regarded in Fourier space, the inverse Helmholtz operator is equiv-
alent to a low-pass filter with the cut-off given by the inverse of the length-scale l parameterizing inner product
(16). Consequently, extracting gradients in the Sobolev space with the inner product given by (16) has the
effect of de-emphasizing components with characteristic length-scales smaller than l. As was shown in [18],
adjusting this length-scale in the course of the iterative solution of an optimization problem can accelerate
convergence of iterations. For example, starting with l large and then gradually decreasing it to zero results
in a multiscale procedure targeting first the large-scale structures and then gradually homing in on the smaller
scale components of the solution ~/opt (we note that liml!0$

H1ðlÞ
J ¼ $L2J uniformly in x). This technique can
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thus be regarded as a combination of operator preconditioning with the variable metric approach mentioned
in Introduction. Finally, we emphasize that due to the inclusion H 1ðlÞð0; 2pÞ 
 L2ð0; 2pÞ [25], $H1ðlÞ

J does rep-
resent an acceptable descent direction for problem (6) as regards smoothness.

In the present work the state and adjoint systems are both solved in the well-resolved setting (on 512 grid
points) using a dealiased pseudospectral Fourier–Galerkin method. Time advancement is performed using an
RK3 scheme on the nonlinear term in (6) and the term uoxu	 in (13), and the h method with h ¼ 5=8 on the
linear terms (see [26]).

2.2. State reconstruction for the Navier–Stokes system

As our second model we consider a viscous incompressible flow in a channel X , ð0; L1Þ � ð�1; 1Þ � ð0; L3Þ
periodic in the streamwise and spanwise directions x1 and x3, and bounded in the direction x2 (Fig. 2a). The
quantities defined at the wall, i.e., for x2 ¼ �1, will be distinguished by the subscript ‘‘w”. Defining the state

vector as q ¼ u

p

� �
, where u ¼ ½ u1 u2 u3 �T is the velocity vector field and p is the pressure field, the system

evolution is governed by the Navier–Stokes system
Fig. 2.
Bewley
N ðqÞ ¼
ou
ot þ ðu � rÞuþrp � mDu

r � u

� �
¼

P xi

0

� �
in X� ð0; T �;

u ¼ U at t ¼ 0;

ujw ¼ 0 oX;

ð18Þ
where P x is the pressure gradient adjusted to maintain a constant mass flux and U is the initial condition. Con-
sistently with the properties of system (18) [24], we will assume that U 2 U ¼ L2ðXÞ. In the present investiga-
tion the state q will be estimated based on information about skin friction and pressure fluctuations at the wall
(i.e., for x ¼ �1) which are a signature of the near-wall coherent structures (Fig. 2b, see also [22] for a discus-
sion concerning the completeness of this set of measurements). We define first a wall measurement vector
m ¼ ½m1 m2 m3 �T, where m1 ,

ou1

on jw, m2 , pjw; and m3 ,
ou3

on jw, distributed in time over an assimilation
window ½0; T � and in space over the channel walls for an ‘‘actual” channel-flow system (n is defined as an in-
ward-facing normal). Solution of our state estimation problem is obtained as the minimization of a functional
J ðUÞ which represents mathematically the ‘‘misfit” of the measurements in the actual and reconstructed
systems
J ðUÞ ¼ 1

2

Z T

0

‘1

ou1

on
� m1

���� ����2

w

þ ‘2 p � m2k k2
w þ ‘3

ou3

on
� m3

���� ����2

w

" #
dt; ð19Þ
where the coefficients ‘1; ‘2; ‘3, and the norm k � kw are defined appropriately to measure the deviation of the
model system from the measurements of the actual flow on the channel walls at x2 ¼ �1. Note that ‘2 is pro-
portional to the square of the (constant) fluid density, q2; and ‘1 and ‘3 are proportional to the square of the
x2

x1

U (x2)

x3

a b

Turbulent flow in a channel at Res ¼ 100: (a) configuration and (b) visualization of near-wall coherent structures (courtesy of T.
).
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(constant) fluid viscosity, l2, in order to make (19) dimensionally consistent. In the present work we will
consider the case in which L2 norms are used such that kf k2

w ,
R

w f 2 dS. The Gâteaux differential of (19) is
given by
J ðU; U0Þ ¼
Z T

0

Z
w
‘1

ou1

on
� m1

� �
ou01
on
þ ‘2ðp � m2Þp0 þ ‘3

ou3

on
� m3

� �
ou03
on

� �
dS dt; ð20Þ� �
where the equation governing the perturbation vector q0 ¼ q0ðU; U0Þ ¼ u0

p0
satisfies the Navier–Stokes sys-

tem linearized around the state qðUÞ, i.e.,
Lðq0Þ ¼
ou0

ot þ ðu � rÞu0 þ ðu0 � rÞuþrp0 � mDu0

r � u0

" #
¼

0

0

� �
in X� ð0; T �;

u0 ¼ U0 at t ¼ 0;

u0jw ¼ 0 on oX:

ð21Þ
Here again the operator L : X ! X 	 is to be understood in the weak sense. Relation (20) can now be trans-
formed to a form consistent with Riesz identity (5) by introducing an adjoint operator L	 : X ! X 	 and the
corresponding adjoint state q	 2 X via the following identity:
hq	;Lq0iX�X	 ¼ hL
	q	; q0iX�X	 þ b; ð22Þ
where h�; �iX�X	 represents the duality pairing between the spaces X and its dual X 	, i.e., given
z1 2 X and z2 2 X 	; hz1; z2iX�X	 ,

R T

0

R
X z1 � z2 dXdt. Using integration by parts and the definition of L in

(21), we obtain
L	q	 ¼ � ou	

ot � u � ½ru	 þ ðru	ÞT� � rp	 � mDu	;

�r � u	

" #
;

b ¼
Z

X
ðu	j u0jÞj

t¼T
t¼0 dX�

Z T

0

Z
w

nj p	 u0j þ u	j p0 þ u	i ðuj u0i þ u0j uiÞ � m u	i
ou0i
oxj
� u0i

ou	i
oxj

� �� �
dXdt;

where summation is implied for repeated indices:
Defining the adjoint system as
L	q	 ¼ 0 in X� ½0; T Þ;
u	 ¼ 0 at t ¼ T ;

u	1ðx1;�1; x3Þ ¼ ‘1
1
m

ou1

on � m1

� �
;

u	2ðx1;�1; x3Þ ¼ ‘2�n2ðp � m2Þ;
u	3ðx1;�1; x3Þ ¼ ‘3

1
m

ou3

on � m3

� �
;

9>=>; on oX;

ð23Þ
where q	 ¼ u	

p	

� �
, and using (21) and (22) we can now express Gâteaux differential (20) in a desired form con-

sistent with (5)
J 0ðU; U0Þ ¼
Z

X
u	jt¼0 �U0 dX: ð24Þ
Thus, this differential (i.e., the sensitivity of the cost functional J with respect to perturbations U0 of the
initial condition) can be expressed using the solution of adjoint system (23). Relationship (24) can now be
employed to extract the gradient required in descent optimization algorithm (4). Since U ¼ L2ðXÞ is equipped
with the inner product ðz1; z2ÞL2

,

R
X z1 � z2 dX for z1; z2 2 L2ðXÞ, we immediately obtain
J 0ðU; U0Þ ¼
Z

X
u	jt¼0 �U0 dX ¼ ð$L2J ;U0ÞL2

) $L2J ¼ u	jt¼0: ð25Þ
As already discussed in Section 2.1, identifying J 0ðU; U0Þ with an H1ðlÞ inner product defined as
ðz1; z2ÞH1ðlÞ ¼ 1

ð1þl2Þ

R
X ðz1Þi ðz2Þi þ l2ðoxjðz1ÞiÞ ðoxjðz2ÞiÞ
	 


dX i.e.,
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J 0ðU; U0Þ ¼ ð$H1ðlÞ
J ;U0ÞH1ðlÞ ; ð26Þ
then integrating by parts and using the boundary conditions $H1ðlÞ
J jw ¼ 0, the gradient $H1ðlÞ

J is obtained as
the solution of the following boundary value problem for the Helmholtz equation
1
1þl2 ½1� l2 D�ðrH1ðlÞ

J Þ ¼ u	jt¼0; in X

rH1ðlÞ
J jw ¼ 0;

rH1ðlÞ
J periodic in x1 and x3:

8>><>>: ð27Þ
The length-scale l plays here the same role as discussed in Section 2.1 and the same comments apply as regards
variable metric operator preconditioning.

We will study the case with the Reynolds number Res ¼ 100. Both Navier–Stokes system (18) and adjoint
system (23) are solved numerically with a method combining a finite-difference discretization on a nonuniform
grid in the wall-normal direction x2 with spectral discretization in the periodic directions x1 and x3. Time-
advancement is carried out applying the RK3 method to the nonlinear terms in (18) and the term
u � ½ru	 þ ðru	ÞT� in (23), and the Crank–Nicolson method to the remaining terms. Further details concerning
this numerical method together with benchmark computations are presented in [3].

3. Gradient extraction in Banach spaces

In this Section we show how steepest descent directions can be identified in general Banach spaces not
equipped with the Hilbert structure. This idea was introduced by Neuberger [15] in the context of numerical
solution of direct problems for PDEs. As regards adjoint-based solution of inverse problems for PDEs, similar
ideas were discussed in [27,28]. We will assume that the Banach space of controls U is reflexive, i.e., U		 ¼ U.
Fixing /, the Gâteaux differential J 0ð/; �Þ can be regarded as a bounded linear functional on U, i.e.,
J 0ð/; �Þ : U ! R. As such, the Gâteaux differential admits the representation
J 0ð/; /0Þ ¼ h$UJ ;/0iU	�U ; ð28Þ

where $UJ 2 U	, i.e., the gradient $UJ is an element of the dual space U	 and h�; �iU	�U denotes the duality
pairing of the spaces U and U	, i.e., for z1 2 U and z2 2 U	; hz1; z2iU	�U ,

R
X z1 z2 dx. We emphasize that the

Riesz theorem and inner-product representation (5) are not applicable in the present case when U is not a Hil-
bert space. In many important situations the dual space U	 is ‘‘larger” than the primal space U, i.e., U � U	, in
which case the gradient $UJ may not belong to the control space U and therefore could not be used to update
the control in (4). The reason is that, if $UJ 62 U, the gradient $UJ may not meet the regularity (smoothness),
integrability, etc., conditions required for well-posedness of the original problem Gðv;/Þ ¼ 0. In the compu-
tational setting this may become apparent in the form of small-scale oscillations and/or singularities appearing
in the gradient as the numerical resolution is refined. Thus, in a general case an acceptable steepest descent
direction, denoted here DJ , may not be identified with the negative gradient and must be therefore deter-
mined in a different way. As shown in [15,27], this can be done defining DJ to be the unit-norm element
of the space U which minimizes expression (28). In other words, we postulate to find DJ as the solution of
the following constrained minimization problem
DJ ¼ argmink#kU¼1h$UJ ;#iU	�U ; ð29Þ

which can be transformed to the more convenient unconstrained form
DJ ¼ argmin#2U h$UJ ;#iU	�U þ
l
p
k#kp

U

� �
¼ argmin#2UFð#Þ; ð30Þ
where p is a positive integer chosen to make the resulting expression simpler, l is the Lagrange multiplier and
F : U ! R is the Lagrange functional. This problem can be solved by examining the first-order optimality
conditions for F . Thus, the steepest descent direction DJ is characterized by the vanishing of the Gâteaux
differential of (30), i.e.,
8#02U F 0ðDJ ;#0Þ ¼ h$UFðDJ Þ;#0iU	�U ¼ 0; ð31Þ
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where $UF : U ! U	 and F 0 is the Gâteaux differential of the Lagrange functional F . Thus, we obtain
$UFðDJ Þ ¼ 0 in U	 ð32Þ

as an equation characterizing the descent direction DJ 2 U. Depending on the expression for the norm k � kU ,
equation (32) may be of algebraic or differential type. Specific examples will be analyzed in Sections 3.1 and
3.2. We note that the mapping $UF : U ! U	 is nonlinear, hence determination of the descent direction in a
Banach space involves a nonlinear transformation of the adjoint variable. In order to distinguish them from
the gradient $J , we will refer to DJ as the Lebesgue, Besov, etc., descent directions depending on the choice
of the function space U. On the other hand, when the control space U does possess the Hilbert structure, i.e.,
U ¼ V, then after setting p ¼ 2, (31) becomes
DJ ¼ argmin#2V h$VJ ;#iV	�V þ
l
2
ð#;#ÞV

h i
; ð33Þ
and, using the now applicable Riesz representation (5), optimality condition (31) becomes
h$VJ ;#0iV	�V þ lðDJ ;#0ÞV ¼ ð$VF ;#0ÞV ¼ 0: ð34Þ
Transforming (34) using integration by parts we obtain expressions such as (17) and (27). Thus, we con-
clude that gradient extraction in Hilbert spaces is in fact a particular case of the generic procedure developed
in this investigation.

Identification of descent directions in Banach spaces has therefore the effect of a nonlinear change of vari-
ables in the optimization problem. Hence, given a Gâteaux differential J 0ð/; /0Þ, there is a distinct direction of
the steepest descent associated with every reflexive Banach space U assumed to contain /0 and, if the optimi-
zation problem is convex, these descent directions will ultimately lead to the same minimizer, but the length of
the path may be different in different spaces. Obviously, now the important question is how these spaces
should be chosen in order to yield a small number of iterations in (4). A mathematically rigorous answer
can be given in the case of rather simple problems only, such as the one discussed in Appendix A. In the case
of more realistic problems, such as the ones introduced in Sections 2.1 and 2.2, to the author’s best knowledge
mathematically precise results are unavailable and good choices of the spaces can only be made by way of
numerical experimentation. In this sense the proposed approach can be regarded as heuristic. However, from
the point of view of many practical optimization problems this is acceptable, because such optimization prob-
lems are often solved repeatedly using different input data. This is the case, for example, of the variational data
assimilation performed on regular basis in order to provide initial conditions for the ensuing weather forecasts
(in fact, our model PDE optimization problems from Sections 2.1 and 2.2 were devised to mimic 4DVAR).

As regards identification of descent directions, we will consider families of Banach spaces parametrized by
one, or more, continuous parameters, such as, for example, an integrability or differentiability index. In the
spirit of the variable metric method, during iterations we will gradually modify the Banach space in which
the descent directions are identified by changing values of these parameters. In order to ensure that the under-
lying PDE problem remains well-posed at every iteration, it is necessary that all of these spaces be contained in
U. Thus, we will begin the iterations by first constraining the iterates to some ‘‘small” subspace U ð0Þ of U which
will then ‘‘grow” until it becomes numerically indistinguishable from U . Thus, if e.g., U ¼ L2, the intermediate
spaces U ðnÞ must ultimately approach the space L2. The family of spaces used for construction of the descent
directions can thus be ordered as follows
U ð0Þ � U ð1Þ � � � � � U ðnÞ � � � � � U; ð35Þ

where U ðnÞ is the Banach space used at the nth iteration. In general, the problem of finding a continuous family
of function spaces linking two given function spaces is the focus of an area of the functional analysis known as
the interpolation theory [25,29]. There are many profound results in this area, however for our purposes here
we will only use some fundamental facts concerning the families of the Lebesgue, Sobolev and Besov spaces. In
the remaining parts of this Section we will show how the steepest descent directions for the model problems
from Sections 2.1 and 2.2 can be obtained in the Lebesgue and Besov spaces. We omit the case of general
Sobolev spaces, because it ultimately produced results similar to the other two cases. The mathematical theory
concerning determination of descent directions in general Sobolev spaces was discussed in [15]. We only
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mention here that the corresponding descent directions are determined by equations formally similar to (17),
but with the Laplace operator replaced with the nonlinear p-Laplacian.

3.1. Identification of the steepest descent directions in the Lebesgue spaces LqðXÞ

3.1.1. Optimization Problem for the Kuramoto–Sivashinsky System

In this Section we characterize the directions of the steepest descent in the space LqðXÞ, depending on one
free parameter q 2 ð1;1Þ, for the optimization problem introduced in Section 2.1. The norm in LqðXÞ is given
by
kukLq
¼

Z 2p

0

jujp dx
� �1=p

ð36Þ
and the restriction on the index q is related to the requirement of reflexivity, i.e., ½LqðXÞ�		 ¼ LqðXÞ, which does
not hold for q ¼ 1 and q ¼ 1 [25]. We also note that for 1 < q <1 expressions for the norms in LqðXÞ are
differentiable. Furthermore, since Lq1

ðXÞ 
 Lq2
ðXÞ for q1 > q2, the family of spaces LqðXÞ with the index q

decreasing from some q0 to 2 forms a hierarchy of the type (35) where U ¼ L2. Following the procedure out-
lined at the beginning of this Section, we determine the steepest descent direction in the space LqðXÞ as the
solution of the minimization problem
DLqJ ¼ argmink#kLq¼1h$J ; #iLq	�Lq
; ð37Þ
where Lq	 ðXÞ ¼ ½LqðXÞ�	 with 1
q	 þ 1

q ¼ 1 is the dual space with respect to LqðXÞ. Introducing the Lagrange mul-
tiplier l and converting (37) to the corresponding unconstrained formulation we obtain
DLqJ ¼ argmin# h$J ; #iLq	�Lq
þ l

p k#k
p
Lq

h i
¼ argmin#

R 2p
0

u	jt¼0#þ l
q j#j

q
� �

dx:
ð38Þ
The first-order optimality condition for (38) yields
8#02LqðXÞ

Z 2p

0

ðu	jt¼0 þ lDLqJ jDLqJ jq�2Þ#0 dx ¼ 0 ð39Þ
which, given the arbitrariness of #0, is equivalent to the relationship
DLqJ jDLqJ jq�2 ¼ � 1

l
u	jt¼0 in X: ð40Þ
Thus, the steepest descent direction in LqðXÞ is
DLqJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

l u	jt¼0
q�1

q
; q–even;

�sgnðu	jt¼0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l ju	jt¼0jq�1

q
; q–odd:

8><>: ð41Þ
We reiterate that when q 6¼ 2 the steepest descent direction in LpðXÞ is obtained by applying a nonlinear

transformation to the adjoint field u	jt¼0. In the special case q ¼ 2 we immediately obtain
DL2J ¼ � 1

l
v	jt¼0 ¼ $L2J ð42Þ
which coincides with the ‘‘classical” Hilbert space expression obtained in Section 2.1. We emphasize that a
Lebesgue descent direction DLqJ can be computed by evaluating algebraic expressions (41) at every point
in the domain X and there is no need to solve a system of coupled equations. As regards the constant l, which
serves as the Lagrange multiplier in the unconstrained formulation (38), it is chosen to normalize DLqJ to unit
norm, i.e., kDLqJ kLq

¼ 1. Finally, we comment that in the nonreflective cases (q ¼ 1 and q ¼ 1) the above
procedure does not yield meaningful results.
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3.1.2. Optimization problem for the Navier–Stokes system

In this Section we characterize the direction of the steepest descent in the space LqðXÞ, depending on one
free parameter q 2 ð1;1Þ, for the optimization problem introduced in Section 2.2. The LqðXÞ norm of a vec-
tor-valued field u : X! R3 is given by
kukLq
¼

Z
X
jujq dX

� �1=q

; ð43Þ
where juj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1 þ u2
2 þ u2

3

p
. Comparing with the case considered in Section 3.1.1 now the situation is more

complicated, because the direction of the steepest descent is a vector field which must satisfy the additional
condition of incompressibility. Following the procedure outlined at the beginning of this Section, we deter-
mine the steepest descent direction in the space LqðXÞ as the solution of the minimization problem
DLqJ ¼ argminkHkLq¼1;$�H¼0h$J ;HiLq	�Lq
: ð44Þ
Introducing two Lagrange multipliers l and g, and converting (44) to the corresponding unconstrained for-
mulation we obtain
DLqJ ¼ argminH h$J ;HiLq	�Lq
þ l

p
kHkp

Lq
þ
Z

X
gð$ �HÞdX

� �
¼ argminH

Z
X

u	jt¼0 �Hþ
l
q
jHjq �H � $g

� �
dX; ð45Þ
where we used integration by parts to transform the divergence term and chose the boundary condition for the
Lagrange multiplier as og

on jw ¼ 0, which annihilated the boundary term arising from this transformation. The
first-order optimality condition for (45) yields
8H02LqðXÞ

Z
X

u	jt¼0 þ lDLqJ jDLqJ jq�2 � $g
� �

�H0 dX ¼ 0 ð46Þ
which, given the arbitrariness of H0, is equivalent to the following algebro-differential system
DLqJ jDLqJ jq�2 ¼ � 1
l u	jt¼0 þ $g; x 2 X

Dg ¼ lð$jDLqJ jq�2Þ �DLqJ ; x 2 X
og
on jw ¼ 0;

8>><>>: ð47Þ
where the second (Poisson) equation is obtained by applying the divergence operator to the first equation and
then using the incompressibility condition $ � ðDLqJ Þ ¼ 0. We note that in the special case q ¼ 2 we have
g  0 and (47) reduces to $L2J ¼ � 1

l u	jt¼0 [cf. (25)]. As before, the Lagrange multiplier l is adjusted in order
to normalize DLqJ to the unit LqðXÞ norm, i.e., kDLqJ kLq

¼ 1. We remark that the procedure described above
is closely related to the Helmholtz–Weyl decomposition which is a generalization of the Helmholtz–Hodge
decomposition to the spaces LqðXÞ [30]. We emphasize that, in contrast to the 1D case where the incompress-
ibility condition was not present [cf. (41)], new problem (47) is nonlocal and therefore after discretization
yields a fully coupled nonlinear system. We solve this system using an iterative splitting method which com-
bines Newton’s method with globalization [31] applied to the first equation (with g frozen during an iteration)
with a standard Poisson solver applied to the second equation in (47). For modest values of q convergence
usually occurs within a few dozens of iterations.

3.2. Identification of the steepest descent directions in the Besov spaces Bs
p;qðXÞ

In this Section we characterize the steepest descent directions in the Besov space Bs
p;qðXÞ depending on three

adjustable parameters: s; p and q. We will consider the parameter ranges s P 0 and p; q P 2, for which we
have Bs

p;qðXÞ 
 L2ðXÞ [25], so that such Besov spaces can form a hierarchy such as (35) with U ¼ L2ðXÞ. Besov
spaces arise as a result of interpolation between Sobolev spaces with different integer smoothness, therefore
they appear to be good candidates for the variable metric approach developed in this investigation. We
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emphasize that, since the spaces LqðXÞ and B0
q;q are not equivalent, the Lebesgue descent directions are not spe-

cial cases of the Besov descent directions. In order to avoid difficulties related to the additional condition of
incompressibility in the case of vector fields, we derive the steepest descent directions only for the optimization
problem introduced in Section 2.1. From the computational point of view, the most convenient expression for
the norm of an element of a Besov space is given in terms of a wavelet decomposition of that element. Defining
an orthogonal wavelet w such that if we set wk;jðxÞ , 2

k
2wð2kx� jÞ to be the scaled (by 2

k
2) and translated (by

j2�k) dilates (by 2k) of the original mother wavelet w, then fwk;jgk;j2Z forms an orthogonal basis for L2ðRÞ. In
an analogous manner we define the scaling function u associated with w yielding the functions uk;jðxÞ ,
2

k
2uð2kx� jÞ, such that the set fuk;jgk;j2Z is for a fixed k orthonormal in L2ðRÞ. When working on a periodic

domain X, rather than in R, we need to consider suitably periodized wavelets and scaling functions with non-
negative scales k P 0 only and shifts j defined such that suppðwk;jÞ \ X 6¼ ;. For a specific value of k we will
assume allowable shifts j 2 f0; . . . ;N kg with N k depending on the particular wavelet used. We will also assume
that when k ¼ 0, the only shift possible is j ¼ 0. Defining the expansion coefficients as
a0 ¼
Z 2p

0

zðxÞu0;0ðxÞdx; ð48aÞ

bk;j ¼
Z 2p

0

zðxÞwk;jðxÞdx; k ¼ 0; 1; . . . ; j ¼ 0; . . . ;N k ð48bÞ
a function z 2 L2ð0; 2pÞ can be represented as
z ¼ a0u0;0 þ
X1
k¼0

XNk

j¼0

bk;jwk;j: ð49Þ
For further details concerning wavelets and the multiresolution analysis we refer the reader to the mono-
graphs [32,33]. With these definitions an (equivalent) norm in the Besov space Bs

p;q can be expressed as [25]
kzkq
Bs

p;q
¼ ja0jq þ

X1
k¼0

2kpðsþ1=2�1=pÞ
XNk

j¼1

jbk;jj
p

" #q
p

: ð50Þ
Roughly speaking, functions in the space Bs
p;qðXÞ have s derivatives in LpðXÞ with the additional parameter q

providing a finer gradation in smoothness. Following the procedure outlined at the beginning of this Section,
we determine the steepest descent direction in the space Bs

p;qðXÞ as the solution of the minimization problem
DBs
p;qJ ¼ argmink#kBs

p;q
¼1h$J ; #iB�s

p	q	�Bs
p;q
; ð51Þ
where B�s
p	q	 ¼ ½Bs

p;q�
	 with 1

p	 þ 1
p ¼ 1 is the dual space with respect to Bs

p;q. Introducing the Lagrange multiplier l
and converting (51) to the corresponding unconstrained formulation we obtain
DBs
p;qJ ¼ argmin# h$J ; #iB�s

p	q	�Bs
p;q
þ l

q
k#kq

Bs
p;q

� �

¼ argmin# r0a0 þ
X1
k¼0

XNk

j¼0

ck;jbk;j þ
l
q

ja0jq þ
X1
k¼0

2kpðsþ1=2�1=pÞ
XNk

j¼0

jbk;jj
p

" #q
p

0@ 9=;
8<:

35;
24 ð52Þ
where the following wavelet representations were employed for the gradient $J ¼ r0u0;0 þ
P1

k¼0

PNk
j¼0ck;jwk;j

and the element # ¼ a0u0;0 þ
P1

k¼0

PNk
j¼0bk;jwk;j. The first-order optimality condition for (52) yields
8a0
0
2R;b0k;j2lpðlqÞ

X
j

r0 þ lja0jq�2a0

h i
a00 þ

X1
k¼0

XNk

j¼0

ck;j þ lq2kpðsþ1=2�1=pÞ
X

l

jbk;lj
p

 !q
p�1

jbk;jj
p�2bk;j

24 35b0k;j ¼ 0;

ð53Þ

where a00 and fb0k;jgk;j2Z are the wavelet expansion coefficients of the perturbation element #0. Given the arbi-
trariness of #0, (53) is equivalent to the following infinite system of algebraic equations:
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lja0jq�2a0 ¼ �r0; j ¼ 1; . . . ;Nj; ð54aÞ

lq2kqðsþ1=2�1=pÞ
XNk

l¼0

jbk;lj
p

 !q
p�1

jbk;jj
p�2bk;j ¼ �ck;j; k ¼ 0; . . . ;1: ð54bÞ
We note that in the special case p ¼ q system (54b) uncouples. When p 6¼ q we can solve system (54) by first
truncating it at the number of levels consistent with the spatial discretization (here kmax ¼ log21024 ¼ 10) and
using Newton’s method with globalization [31] to solve the resulting nonlinear algebraic system. As a matter
of fact, since system (54b) decouples for different values of k, Newton’s method can be used independently for
every value of k which reduces the size of the linear algebraic problems that need to be solved at every iteration
and also mitigates attendant problems with conditioning. In our computations reported in Section 4.1 wavelet
decompositions were computed using the ‘‘symmlet” wavelet with 10 vanishing moments. This was done with
the help of the MATLAB toolbox wavelab [34]. For modest values of the difference p � q this approach
leads to quite rapid convergence. We also emphasize that, because of the relationships between the Besov
norms and wavelet decompositions [cf. (50)], determination of Besov descent directions is in fact equivalent
to nonlinear wavelet filtering applied to the adjoint field as defined by (54) (the filtering is nonlinear, because
modifications of the wavelet coefficients depend on the coefficients themselves). This is therefore analogous to
determination of gradients in the Hilbert–Sobolev spaces H 1ðlÞðXÞ which can in turn be interpreted as low-pass
Fourier filtering applied to the adjoint field (see Section 2.1). While the linear Fourier filtering modifies com-
ponents based on their wavenumbers only, the wavelet filtering does so based on their relative ‘‘coherence”

[21]. Finally, we remark that the utility of wavelet decompositions for computation of Besov descent directions
was first recognized in the image processing literature [20,35].
4. Computational results

In this Section we illustrate the utility of the proposed approach by comparing its performance to the stan-
dard approach based on the L2 and H 1 gradients. We do this for the two model problems introduced in Sec-
tions 2.1 and 2.2. The actual computational complexity of a state estimation problem depends on several
factors, such as the quality of the initial guess, length of the assimilation window, importance of nonlinear
effects and the rank of the observation operator. In order to exhibit more clearly the potential of the proposed
method, in both model problems we will choose these parameters in such a way as to make the state estimation
problem quite hard and therefore practically unsolvable using the standard methods, in which case the itera-
tions either get stuck in local minima, or take excessively long to converge. In both cases iterations (4) are
carried out using the Polak–Ribiere version of the conjugate gradient (CG) method [7]. The ‘‘momentum”

term in the CG method is calculated using the standard L2 inner product and is reset to zero every 20 itera-
tions. Line minimization of the cost functional along the descent direction is performed at every iteration using
Brendt’s method [36].

4.1. Results concerning state reconstruction for the Kuramoto–Sivashinsky system

The problem set-up is the same as the problem investigated in [18], i.e., Kr ¼ f1; . . . ; 50g in (8) and the
initial guess is /ð0Þ ¼ 0, except that now we use a longer assimilation window ½0; T � with T ¼ 5� 10�6
1
eters characterizing the descent directions in different function spaces employed to solve the optimization problem from Section 2.1
)]

l0 xl s0 xs p0 xp q0 xq

– – – – – – – –
0.2 1.05 – – – – – –
– – – – – – 10 2
– – 1 1.1 7 1.1 5 1.1

mber of nonblank entries in each line is equal to the number of adjustable parameters in the corresponding case.
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corresponding to 500 time steps. As our computational experience shows, this is enough to make the optimi-
zation problem significantly more difficult than for 300 time steps which was the case studied in [18]. Solution
of this state estimation problem was attempted using the Lebesgue and Besov descent directions in addition to
the classical L2 and H 1 gradients. Consistently with hierarchy (35), the parameters ln; sn; pn and qn character-
izing the spaces H 1ðlnÞ; Lqn

, and Bsn
pn;qn

at the nth iteration are changing according to the expressions
Fig. 3.
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ln ¼ l0x
�n
l ; sn ¼ s0x

�n
s ;

pn ¼ 2þ ðp0 � 2Þx�n
p ; qn ¼ 2þ ðq0 � 2Þx�n

q ;
ð55Þ
where l0; s0; p0 and q0 are the starting values and xl;xs;xp and xq are suitably chosen decrease parameters,
all greater than unity. We emphasize that with these choices of the parameters the spaces H 1ðlnÞ,
Lqn
; and Bsn

pn;qn
become for n!1 numerically indistinguishable from the space L2. Below we summarize

the best results obtained with each type of the descent direction after a rather modest amount of computa-
tional tests performed to find good values of the parameters l0; s0; p0; q0, xl;xs;xp and xq. These parameter
values are collected in Table 1.

We begin the presentation of the results by showing in Fig. 3 the descent directions obtained at the first
iteration in the different cases listed in Table 2.1. We note that while the shape of the H 1 gradient appears quite
close to the shape of the L2 gradient, the shapes of the Lq and Bs

p;q descent directions differ from it quite sig-
nificantly. Next in Fig. 4 we present the histories of the cost functional J ð~/ðnÞÞ during iterations in the four
cases L2, H 1; Lq; and Bs

p;q. We note that the iterates in the cases L2 and H 1 get stuck in local minima. On the
other hand, in the cases Lq and Bs

p;q we observe what appears to be convergence to the global minimum, and in
the case Bs

p;q this convergence occurs quite rapidly. These findings are corroborated by the results shown in
Fig. 5 where we present distribution of the reconstruction error measures
EX ðtÞ ,
k~uðt; ~/ðnmaxÞÞ � ~uactðtÞkX

k~uactðtÞkX
; ð56Þ
defined within the assimilation window ½0; T � at the end of the iterations (i.e., for n ¼ nmax). The norms k � kX ,
where X ¼ H�1; L2; H 1, are defined using the Parceval identity and denoting ẑk the Fourier transform of zðxÞ
as
kzk2
H�1 ,

X1
k¼1

k�2 ĵzkj2; kzk2
L2
,

X1
k¼0

ĵzkj2; kzk2
H1 ,

X1
k¼0

k2 ĵzkj2: ð57Þ
These norms are defined here in Fourier space in order to emphasize the fact that (56) measures the accuracy
of reconstruction at, respectively, large, intermediate and small scales [18]. We observe that by far the best
reconstruction with regard to all three metrics is obtained in the cases, respectively, Bs

p;q and Lq. We emphasize
that in the Bs

p;q case a significant reduction of the cost functional was obtained after much fewer iterations.
Clearly, the poorest reconstruction was obtained in the case H1.
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4.2. Results concerning state reconstruction for the Navier–Stokes system

The problem set-up is the same as in [22], i.e., the initial guess Uð0Þ is taken as the mean flow and the assim-
ilation window ½0; T � has the length of 100 viscous time units tþ corresponding to 330 time steps. As already



Table 2
Parameters characterizing the descent directions in different function spaces employed to solve the optimization problem from Section 2.2
[cf. (55)]

Case l0 xl q0 xq

L2 – – – –
H1 0.1 1.001 – –
Lq – – 3 1.001

The number of nonblank entries in each line is equal to the number of adjustable parameters in the corresponding case.
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pointed out in [22], this combination of parameters makes the present state estimation problem very challeng-
ing. Solution of this problem is attempted using Lebesgue descent directions introduced in Section 3.1.2,
in addition to the classical H1 and L2 gradients. The parameters ln and qn characterizing the spaces
Lqn
ðXÞ and H1ðlnÞðXÞ at the nth iteration change according to expressions (55). Below we summarize the best

results obtained with each type of the descent direction after a rather modest amount of computational tests
performed to find good values of the parameters l0; q0, xl and xq. These parameter values are collected in
Table 2.

We begin the presentation of the results by showing in Fig. 6 the histories of the functional J ð ~UðnÞÞ during
iterations in the three cases L2;H

1 and Lq. We note that, while the decrease of J is in all cases rather slow, it is
clearly the fastest in the Lq case and the slowest in the L2 case. Next in Fig. 7 we present distribution of the
error norm
Fig. 6.
(dashe
EL2
ðtÞ ,

k~vðt; ~Uð500ÞÞ � ~vactðtÞkL2

k~vactðtÞkL2

; ð58Þ
within the assimilation window ½0; T � after n ¼ 500 iterations [due to difficulties in computing the H�1 and H1

norms, we present here results for the L2 norm only, cf. (43)]. While in none of the cases can we claim that the
original flow has been successfully reconstructed, the progress towards the actual minimizer Uact is in the cases
H1 and Lq significantly better than in the case L2, with the case H1 yielding the lowest errors over the whole
assimilation window. We conclude our discussion by mentioning that state estimation in the present channel
flow problem with distributed wall measurements was also investigated using other methods, including Tay-
lor-series expansions in [22] and Kalman filtering in [37].
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5. Summary and conclusions

In this investigation we proposed a method for accelerating convergence of gradient-based optimization of
PDE systems. Inspired by the idea of operator preconditioning of Farago and Karátson [14], our approach
uses descent directions constructed in continuously varying function spaces as a way of preconditioning the
iterations. We show that extraction of descent directions in general Banach spaces not equipped with the Hil-
bert structure is in fact equivalent to a nonlinear change of the control variables. For nonconvex problems
such a change of variables may offer the possibility of ‘‘smoothing” the control space more effectively than
can be done with a linear change of variables (which is equivalent to merely stretching and contracting the
space in the different directions). We showed how such descent directions can be characterized and computed
in the Lebesgue and Besov spaces commonly arising in analysis on nonlinear PDEs [25]. These function spaces
are parametrized by, respectively, one and three parameters which can be adjusted in order to accelerate con-
vergence. Ideally, a prescription of how this should be done should come from the mathematical analysis of
the PDE optimization problem, however, at least for the problems of the type proposed in Sections 2.1 and
2.2, such results are unlikely to be within reach in the foreseeable future. Therefore, these parameters need to
be determined by way of computational experimentation. Our results concerning the Kuramoto–Sivashinsky
equation show that with suitably chosen Lebesgue and Besov descent directions one can solve optimization
problems for which the linear approach with the L2 and H 1 gradients fails. Furthermore, using the Besov des-
cent directions this could be done performing relatively few iterations. The reasons for the superior perfor-
mance of the Besov descent directions appear related to their larger number of independent free
parameters which offer more possibilities for a topology change than are available in the other cases. As
regards the Navier–Stokes problem, our results indicate that approaches based on variable Sobolev gradients
and Lebesgue descent directions exhibit similar performance which is better than in the standard L2 approach.
It is also worth noting that, given the rate of change of the different parameters in the case of both model prob-
lems [cf. (55), and Tables 1 and 2], the Lebesgue and Besov spaces used remained significantly different from
the space L2 during initial iterations only. This initial effect was however important enough to result in much
faster convergence observed also at later iterations. Thus, the two sets of results obtained for two different
model problems show the usefulness of an additional flexibility in the design of an iterative process offered
by the alternative descent directions proposed here. Our computational experience with problems different
than the cases reported here indicates that Banach descent directions are particularly useful in hard problems
in which the classical gradients cannot provide satisfactory performance. As a matter of fact, computational
evidence showing that convergence of iterations in some functional spaces is more rapid than in other possibly
might guide the mathematical analysis of such problems, especially as regards finding for them a natural
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functional space setting. The fact that ‘‘optimal” values of these parameters must be found by experimentation
is not a serious practical limitation, because in actual applications such optimization problems are often solved
repeatedly for a given system using different data (e.g., data assimilation in numerical weather prediction [5]).
Thus, once determined, the sets of ‘‘optimal” parameters can be reused to accelerate optimizations performed
subsequently. From the heuristic point of view, our preconditioning approach can be regarded as an applica-
tion of a nonlinear filter to the L2 descent direction. After its parameters are suitably calibrated, this nonlinear
filter acts to emphasize components of the descent direction which are important for convergence and de-
emphasize those which are assumed to represent noise. We should also mention that the computational cost
involved in determining a Lebesgue or Besov descent direction is insignificant comparing to the cost of a single
iteration. Finally, we remark that using finite-dimensional emulations of the norms used in the different
Banach spaces, the present approach can also be easily applied in the context of the ‘‘discretize – then – dif-
ferentiate” methods.
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Appendix A. Operator preconditioning in numerical solution of a linear boundary value problem

In this Appendix we use the Ritz method applied to the Poisson equation in a 1D periodic domain
X ¼ ð0; 2pÞ to illustrate the importance of extracting gradients in suitable spaces. The problem we consider
is thus
�Dw ¼ g; D : H 1
perðXÞ ! H�1

perðXÞ;
wð0Þ ¼ wð2pÞ;

(
ðA:1Þ
where w 2 U ¼ H 1
perðXÞ and H 1

perðXÞ is the Sobolev space of periodic functions with square integrable first
derivatives. One way of solving (A.1) is by finding minimizers of a cost functional J : H 1

perðXÞ ! R defined as
J ð#Þ ,
Z 2p

0

1

2
ð$#Þ2 � g#

� �
dx; ðA:2Þ
which can be done using iterations (4). Assuming (incorrectly!) that U ¼ L2ðXÞ, the gradient of (A.2) is
$L2J ¼ �D#� g, whereas if one takes U ¼ H 1

perðXÞ, the gradient is $H1

J ¼ D�1½�D#� g�.
It is well-known [7], that the rate of convergence of gradient iterations (4) depends on the condition number

,ðeNÞ of the discrete Hessian eN of (A.2). It can be computed noting that J 00ð#;#0; #00Þ ¼
�
R 2p

0
#00ðD#0Þdx ¼ �

R 2p
0
ðD#00Þ#0 dx. Then, assuming again that U ¼ L2ðXÞ, we have
J 00ð#;#0; #00Þ ¼ ðNL2
#0; #00ÞL2

) NL2
#0 ¼ �D#0 ) NL2

¼ �D: ðA:3Þ
Using Fourier harmonics as the basis functions, the Hessian NL2
can be represented as an infinite diagonal

matrix with entries proportional to the wavenumbers squared k2. After truncating the problem at some
kmax, the discrete Hessian condition number can be expressed as ,ðeNL2

Þ ¼ ðkmax

kmin
Þ2, which grows without bound

as the resolution is refined (i.e., as kmax !1). Thus, as the grid is refined, the conditioning of the minimization
problem deteriorates rendering it practically unsolvable.

On the other hand, taking U ¼ H 1
perðXÞ we have
J 00ð#;#0; #00Þ ¼ ðNH1#0; #00ÞH1 ) NH1#0 ¼ #0 ) NH1 ¼ Id; ðA:4Þ

so that the condition number ,ðeNH1Þ  1 regardless of the numerical resolution used. This is thus an instance
of a perfect conditioning and convergence can in principle be achieved in a single iteration. It must be, how-
ever, borne in mind that determination of the gradient $H1

J is in fact as hard as solution of problem (A.1)
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itself. This example contrasting two extreme situations underlines the usual trade-offs between the effectiveness
and ease of computation of preconditioning operators.
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